Research project

Capability for wafer-level sub-nanometre scale imaging

Project overview

The critical importance of capabilities for semiconductor research in the UK is recognized as part of a national strategy, as stressed in the recent BEIS Report 'The semiconductor industry in the UK'. Particular strength in research is centered around a number of cleanroom facilities located at academic institutions. The University of 天发娱乐棋牌_天发娱乐APP-官网|下载 hosts a range of cutting-edge nanofabrication tools which enable a range of research activities in electronic and photonic devices.

Fabrication of semiconductor devices and circuits becomes cost effective when processed on a large wafer. However, process efficiency can only be achieved if an ultra-high-resolution scanning electron microscope (SEM) with material characterisation system is available to provide high throughput feedback results to improve fabrication and facilitate novel process development. Manually operated SEMs are a common imaging tool for characterisation used in academic research but automated in-line imaging of wafers throughout a process flow is required to achieve fast imaging and shorten inspection time from fabrication processes.

The aim of the proposal is to acquire an ultra-high-resolution SEM (UHR-SEM) capable of material characterisation for wafers up to 200 mm in diameter at the University of 天发娱乐棋牌_天发娱乐APP-官网|下载. As device feature sizes are reduced, dimension and performance variations across the wafer become an issue which must be mitigated at the early stage of the fabrication. Therefore, the proposed UHR-SEM will be unique within the UK academic landscape since it will perform automated in-line imaging and analysis of entire wafers up to 200 mm in diameter at sub-nm resolution. The system will also have a low landing voltage on samples to reduce surface damage during imaging of delicate devices and patterned resists, as well as a good depth of focus for the inspection of thick multi-stack materials. The UHR-SEM will address the main challenges in large wafer imaging such as generating relevant surface metrology information at nanoscale dimensions and creating a detailed map showing various material parameters such as chemical composition and defect distribution.

Staff

Lead researchers

Professor Goran Mashanovich

Personal Chair
Research interests
  • Silicon Photonics
  • Photonics Integrated Circuits
  • Sensors
Connect with Goran

Other researchers

Professor Harold Chong

Professor of Electronic Engineering
Connect with Harold

Professor Otto Muskens

Professor of Physics
Research interests
  • Programmable photonic circuits using ultralow loss phase change materials.
  • Infrared metasurfaces for radiative cooling and defence applications.
  • Deep learning and AI enabled nanophotonic design.
Connect with Otto

Dr Bruce (Jun-Yu) Ou

Associate Professor
Research interests
  • Metalens for imaging and metrology
  • AI for nanoimaging
  • Nano-optomechanics
Connect with Bruce (Jun-Yu)

Collaborating research institutes, centres and groups

Research outputs